1	$y = \frac{7 - 5x}{2}$ or $y = \frac{7}{2} - \frac{5}{2}x$ or $y = 3.5 - 2.5x$ or $2y = 7 - 5x$ oe		2		for making y or 2y the subject Allow $y = -\frac{5}{2}x + c$ oe
		-2.5		A1	for $-\frac{5}{2}$ or -2.5
•					Total 3 marks
2	(1,5,6,4),(4,2)			6 1	M1 for finding midpoint

2	$\left(\frac{-1+5}{2}, \frac{6-4}{2}\right) \operatorname{or}\left(\frac{4}{2}, \frac{2}{2}\right) \operatorname{or}(2, 1)$		6	M1	for finding midpoint
	$\frac{-4-6}{5-1}$ or $\frac{64}{-1-5}$ or $-\frac{10}{6}$ or $-\frac{5}{3}$			M1	indep for finding the gradient of PQ
	$\frac{-4-6}{51} \text{ or } \frac{64}{-1-5} \text{ or } -\frac{10}{6} \text{ or } -\frac{5}{3}$ $\frac{-1}{-\frac{10}{6}} \text{ or } \frac{6}{10} \text{ or } \frac{-1}{-\frac{5}{3}} \text{ or } 0.6$			Ml	for finding the perpendicular gradient to PQ (ft their stated gradient)
	$1 = \frac{3}{5}(2) + c \text{ or } c = -\frac{1}{5} \text{ or } c = -\frac{2}{10} \text{ or } c = -0.2$			M1	dep on 1st and 3rd M1 for substituting '(2, 1)' into $y = \frac{3}{5}x + c$ or find the value of c oe eg $y - 1' = \frac{3}{5}(x - 2')$
	$y = \frac{3}{5}x - \frac{1}{5}$ or $y = 0.6x - 0.2$ or $5y = 3x - 1$			A1	for a correct equation in any form
		3x - 5y - 1 = 0		A1	for $3x-5y-1=0$ or 5y-3x+1=0 or 6x-10y-2=0 oe accept in the form $ax+by=-c$ eg $3x-5y=1$ or $5y-3x=-1$ oe
					Total 6 marks

Altern	ative Mark Scheme for Q2				
2	$(x+1)^2 + (y-6)^2$ or $(x-5)^2 + (y+4)^2$		6	M1	•
	$(x+1)^2 + (y-6)^2 = (x-5)^2 + (y+4)^2$			M1	using $PA^2 = QA^2$ (for some point A on the line)
	$x^2 + 2x + 1 + y^2 - 12y + 36$ or			M1	•
	x^2 - 10x + 25 + y^2 + 8y + 16				
	$x^2 + 2x + 1 + y^2 - 12y + 36 = x^2 - 10x + 25 + y^2 + 8y + 16$			M1	
	eg $2x+1-12y+36 = -10x+25+8y+16$			A1	for a correct linear equation in x
	or $12x + 37 = 20y + 41$				and y
		3x-5y-1=0		A1	for $3x - 5y - 1 = 0$ oe
					Total 6 marks

3	7 7		4	B1	for correct gradient which may
3	$y = -\frac{7}{2}x(+10)$ or (gradient =) $-\frac{7}{2}$		4	ы	be seen in an equation.
	2 \ 2				7 -
					Condone $-\frac{7}{2}x$
	7, 1, 2,			M1	ft their gradient for use of
	 $-\frac{1}{2}m = -1$ or $(m =)-\frac{2}{7}$				$m_1 \times m_2 = -1$
	$-11 = \frac{2}{7} \times 6 + c$ or $y11 = \frac{2}{7} (x - 6)$ oe			M1	ft dep on M1
		$\left(0, -\frac{89}{7}\right)$		A1	accept $\left(0, -12\frac{5}{7}\right)$ must be
					exact values
					Total 4 marks

4				M1	for $y = 3x + c$ oe or $y = mx - 2$ oe or $3x - 2$ or
					eg $L = 3x - 2$ or $y = 3(x \pm a)$
	y = 3x	2	2	A1	oe eg $y - 4 = 3(x - 2)$
					y - 1 = 3(x - 1)
					y - a = 3(x - b) where (a, b) is any
					coordinate on the line
					Total 2 marks

5	(a)	y = -4x + k (oe)	1	B1	for $y = -4x$ or $y = -4x + k$ where k is any
					numerical value $k \neq 7$
					Could be written in another form e.g. $3y +$
					12x = 20

6	eg $\frac{4-(-1)}{6-4}$ (= $\frac{5}{2}$ = 2.5)		4	M1	for a method to find the gradient of L
	eg $\frac{-1}{"2.5"}$ (= $-\frac{2}{5}$ = -0.4) or $\frac{-1}{their}$ gradient oe			M1	ft for a method to find the gradient of M if <i>their</i> gradient of L clearly stated (even if no method shown for gradient of L)
	y = ``-0.4''x + 8 oe eg $y - 8 = -\frac{2}{5}(x - 0)$ or $(8 \div 2) \times 5 (= 20) \text{ oe or}$ $8 \div (\text{-`their gradient of } \mathbf{M}\text{'})$			M1	dep on previous M1 for substitution of $(0, 8)$ into equation for a line or use of $(8 \div 2) \times 5$ (= 20) (maybe on diagram) NB: 20 gains M3 if clearly intended as x coordinate (stated or on a diagram)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	(20, 0)		A1	
					Total 4 marks

7	$\left(\frac{-1+2}{2}, \frac{5+10}{2}\right)$ or $(0.5, 7.5)$ oe		5	M1	
	$\frac{10-5}{2-(-1)} \left(= \frac{5}{3} \right)$ oe			M1	
	$m \times \frac{5}{3} = -1$ oe or $m = -\frac{3}{5}$ oe			M1	ft their gradient for use of $m_1 \times m_2 = -1$
	$`7.5' = '-\frac{3}{5}' \times `0.5' + c \text{ or }$			M1	ft dep on first M1 and third M1
	c = 7.8 oe or				
	$y - 7.5' = -\frac{3}{5}(x - 0.5')$				
		5y + 3x = 39		A1	oe where p , q and r must be integers
					Total 5 marks

8	$3 \div 2 \ (=1.5 \text{ or } \frac{3}{2}) \text{ or } \text{ eg } \frac{51}{4(-0)}$ or $c = -1$		3	M1	for correct method to find gradient or the correct value of c for gradient, may see a correct calculation or $\frac{3}{2}$ oe or $1.5x (+c)$ oe for value of c , allow $c = -1$, $y = -1$, $(L =) mx - 1$ oe
	y = "1.5"x (+ c) or $y = mx - 1or eg y - 5 = m(x - 4)$	$y = \frac{3}{2}x - 1$	-	M1 A1	for use of $y = mx + c$ with either m or c correct (NB: $m \ne 0$) or for $(L =) 1.5x - 1$ oe oe eg $y = 1.5x - 1$
-		2			Total 3 marks

9	(gradient $AM = $) $\frac{4-2}{-3-0}$ or $(=-\frac{2}{3})$		7	Ml	A correct method to find gradient of AM
	$y = \frac{3}{2}x + 2 \text{or}$ $\text{eg } \frac{y - 2}{x} = \frac{3}{2} \text{ oe}$			M1	For the correct equation of the line passing through BD or for a correct expression involving the x and y coordinates of point B or point D
	$(x-3)^2 + (y-4)^2 = 6.5^2 \text{ or}$ $(x-0)^2 + (y-2)^2 = 6.5^2 - [(-3-0)^2 + (4-2)^2]$ oe eg $x^2 + (y-2)^2 = 29.25$			M1	A correct equation in x and y to find the coordinates of B and D
	eg $x^2 + 6x + 9 + y^2 - 8y + 16 - 42.25 = 0$ oe or $x^2 + y^2 - 4y + 4 - 29.25 = 0$ oe			M1	Brackets expanded
	eg $x^2 + 6x + 9 + \left(\frac{3}{2}x + 2\right)^2 - 8\left(\frac{3}{2}x + 2\right) + 16 - 42.25 = 0$ $\left(\frac{2y - 4}{3}\right)^2 + y^2 - 4y + 4 - 29.25 = 0$ oe			Ml	For a correct substitution into a correct equation to get an equation in either <i>x</i> only or <i>y</i> only
	eg $\frac{13}{4}x^2 = \frac{117}{4}$ or oe $13y^2 - 52y - 211.25 = 0$			M1	A fully correct simplified equation in x or in y – all brackets expanded and like terms grouped.
		(3, 6.5) (-3, -2.5)		A1	correct coordinates SCB3 for one pair of correct coordinates or both x values correct or both y values correct
1					Total 7 marks

9 Alt 1	$(AM =)\sqrt{2}$	$3^2 + 2^2$ (= $\sqrt{13}$ = 3.605) or $(AM^2 =) 3^2 + 2^2 (= 1)$	3)		7	M1	Use of Pythagoras for point A to point M
Alt I	$(BM =)\sqrt{c}$	$6.5^2 - \sqrt[4]{13}$ (= $\sqrt{29.25} = \frac{3\sqrt{13}}{2} 5.4083$)			•	M1	A correct method to find the length of BM or DM
	$(SF =) \frac{\sqrt{2}}{2}$ $(LAM =) s$	$\frac{29.25}{\sqrt{13}} = \frac{3}{2} \text{ oe or} \qquad MN = x, BN = 1.5x \text{ (see diagonal of the sin}^{-1} \frac{3}{\sqrt{13}} (= 56.3) \text{ oe or}$ $\cos^{-1} \frac{3}{\sqrt{13}} (= 33.6) \text{ or}$	g) or			M1	A correct method to find the SF of the enlargement of the sides AM to BM or angle LAM OR LMA B.
	or	$\frac{3}{2} \times 2 \text{ or } \overline{MB}_y = \frac{3}{2} \times 3 \text{ or } \overline{MD}_x = -\frac{3}{2} \times 2 \text{ or } \overline{MD}_y = $	2			M1	A correct method to find the translation of at least one component of MB or MD (need not be written in vector form) OR correct Pythagoras statement using the SF to find x coordinates OR 1 correct trig statement to find translations from M
	or $x^2 + 2.25$: or	$\times 2$ and $\overline{MB}_y = \frac{3}{2} \times 3$ or $\overline{MD}_x = -\frac{3}{2} \times 2$ and $\overline{MD}_y = \frac{3}{2} \times 2$	2		-	M1	A correct method to find the translation of both components of MB or MD (need not be written in vector form) OR correct Pythagoras statement with no brackets using the SF to find x coordinates OR 2 correct trig statements to find translations from M
		is translated $\binom{3}{4.5}$ or $(0+3, 2+4.5)$ (= $(3, 6.5)$) is translated $\binom{-3}{-4.5}$ or $(0-3, 2-4.5)$ (= $(-3, -2.5)$))) oe			M1	correct method to find the coordinates of B or D or one pair of correct coordinates or a correct method to find both x coordinates or both y coordinates OR a fully correct simplified equation in x all brackets expanded and like terms grouped.
	3.23x - 2	J.23		(3, 6.5) (-3, -2.5)		A1	scorrect coordinates SCB3 for one correct coordinate or both <i>x</i> values correct or both <i>y</i> values correct
							Total 7 marks
10	(a)		<i>y</i> =	-3x + 5 oe	2	!	B2 fully correct equation eg $y = -3x + 5$ or $y - 5 = -3(x - 0)$ If not B2 then B1 for $y = -3x + a$ with $a \ne 5$ or $y = bx + 5$ ($b \ne 0, -3$) or $(L =) -3x + 5$
11		$\left(\frac{dy}{dx} = \right)16x - 14$ $16x - 14 = 10$ $(1.5, -9) \text{ or } x = 1.5, y = -9$			-	5	M1 Differentiation to obtain 2 terms with at least 1 correct M1 their dy/dx = 10 dep on M1 A1 coordinates of point on curve at which gradient is 10 – allow given as coordinates or as x worked out and y worked out if meaning is clear
		eg $y9 = -\frac{1}{10}(x - \frac{3}{2})$ oe or eg $-9 = -\frac{1}{10} \times 1.5 + c$ oe Correct answer scores full marks (unless	2x + 20y	+ 177 = 0			M1 A correct method to find the equation for line Q using (1.5, –9) A1 oe where <i>a</i> , <i>b</i> , <i>c</i> are integers eg
		from obvious incorrect working)			-		10x + 100y + 885 = 0
					1		Total 5 marks

12	$y = \frac{3}{5}x\left(+\frac{6}{5}\right)$ or $y = 0.6x(+1.2)$ or		6	M1 for correct gradient which may be seen in an equation.
_	(gradient =) $\frac{3}{5}$ or 0.6 oe			Condone $\frac{3}{5}x$ or $0.6x$
	k = -2			B1 for $k = -2$
	$\left(\frac{-2+8}{2}, \frac{1+7}{2}\right)$ oe or $(3, 4)$			M1 for finding the midpoint (use of their k where $k < 0$)
	$\frac{3}{5}$ " $m = -1$ or $(m =)$ " $-\frac{5}{3}$ "			M1ft their gradient for use of $m_1 \times m_2 = -1$
				Allow $-\frac{5}{3} = -1.67$ or better
	"4" = " $-\frac{5}{3}$ "×"3"+ c or c = 9 or			M1 dep on M3
	$y-"4"="-\frac{5}{3}"(x-"3")$			
	Working required	5x + 3y = 27		A1 allow equation in any form where p , q and r are integers
				Total 6 marks

13	(d)	$y = mx + 4$ where $m \neq 0$ oe		2	M1
		$(eg \ y = 2x + 4)$			
		or			
		y = -2x + c or y + 2x = c oe			
		or			
		-2x + 4 or $f(x) = -2x + 4$ oe			
		Correct answer scores full marks (unless	y = -2x + 4		A1 oe eg $y+2x=4$
		from obvious incorrect working)			

14	eg (gradient =) $\frac{12 - 48}{-5 - 19}$ (= -2.5) oe		3	M1	for a method to find the gradient
	eg $12 = \text{``}-2.5\text{''} \times -5 + c$ oe $y - 12 = \text{``}-2.5\text{''}(x5)$ oe			M1	ft their gradient
	Correct answer scores full marks (unless from obvious incorrect working)	y = -2.5x - 0.5		Al	oe eg $y - 12 = -2.5(x + 5)$ or $2y + 5x + 1 = 0$
					Total 3 marks

15	$\frac{-5-10}{42} (=-\frac{5}{2})$		6	M1	A correct method to find the gradient of AC
	$y-10 = -\frac{5}{2}(x+2)$ oe eg $y = -\frac{5}{2}x+5$ or $y5 = -\frac{5}{2}(x-4)$ oe or $5x+2y=10$ oe			M1	ft (if M1 scored) correct equation of AC
	$y-4 = \frac{2}{5}(x - \frac{27}{5}) \text{ oe or } 4 = \frac{2}{5}\left(-\frac{27}{5}\right) + c\left(y = \frac{2}{5}x + 6.16\right)$ $\frac{4-y}{-\frac{27}{5}-x} = \frac{2}{5} \text{ oe or } 5y - 2x = \frac{154}{5} \text{ oe}$			M1	ft (if first M1 scored) equation of BD or correct equation using gradient of BD
	solves $-\frac{5}{2}x + 5 = \frac{2}{5}x + 6.16$ oe $ \begin{array}{l} 10x + 4y = 20 \\ eg -10x + 25y = 154 \end{array} $ oe, with operation of addition or $ 25x + 10y = 50 \\ -4x + 10y = 61.6 \end{array} $ oe, with operation of subtraction or $ x = \frac{5}{2}y - \frac{154}{10} \text{ oe or } y = \frac{2}{5}x + \frac{154}{25} \text{ oe substituted in other equation} $			M1	Solve equation OR Solve simultaneously the correct equations of lines of AC and BD or correct equation from gradient or other correct equation. If elimination: same coefficient of x or y with suitable sign used to eliminate. If substitution: x or y substituted into other equation.
	Coordinates of intersection of AC and BD: $x = -\frac{2}{5}$, $y = 6$			M1	oe value of x and y at intersection of AC and BD
	Correct answer scores full marks (unless from obvious incorrect working)	(4.6, 8)		Al	oe coordinates of D
	See next page for working with $AD = AB$, $CD = CB$ or gradients				Total 6 marks

15	eg $(10-4)^2 + \left(-2 + \frac{27}{5}\right)^2 (= 47.56)$ $(AB = 6.896)$ or eg $(-5-4)^2 + (4 + \frac{27}{5})^2 (= 169.36)$ $(CB = 13.013)$ or eg $\frac{-5-10}{42}$ or $\frac{4-y}{-\frac{27}{5}-x}$ oe		6	M1	A correct method to find AB^2 or CB^2 or AB or CB or AB or CB or a correct gradient expression for AC or DB
	eg $(y-10)^2 + (x+2)^2 = (10-4)^2 + \left(-2 + \frac{27}{5}\right)^2$ or eg $(y+5)^2 + (x-4)^2 = (-5-4)^2 + (4 + \frac{27}{5})^2$ or $\frac{-5-10}{42} \times \frac{4-y}{-\frac{27}{5}-x} = -1$ oe eg $-60 + 15y = 6x + 32.4$			M1	Using $D(x, y)$ form a correct equation $AD^2 = AB^2$ or $CD^2 = CB^2$ or
	eg $2x - 5y = -30.8$ or $x = 2.5y - 15.4$ or $y = 0.4x + 6.16$ oe			M1	uses rearrangement or solving simultaneous equations to find a correct 3 term linear equation
	eg $(y-10)^2 + (2.5y-15.4+2)^2 = (10-4)^2 + \left(-2 + \frac{27}{5}\right)^2$ eg $(0.4x+6.16+5)^2 + (x-4)^2 = (-5-4)^2 + (4 + \frac{27}{5})^2$			M1	uses substitution to obtain a correct quadratic equation in one unknown
	$7.25y^2 - 87y + 232 = 0$ oe or $1.16x^2 + 0.928x - 28.8144 = 0$ oe			M1	for a 3 term quadratic that can be used to
		(4.6, 8)		A1	find the value of x or the value of y at D oe coordinates of D
		(, 5)			Total 6 marks